ABSTRACT: A laboratory investigation evaluated phosphate (PO$_4^{3-}$) drainage water treatment capabilities of four iron-based filter materials. The iron-based filter materials tested were zero-valent iron (ZVI), porous iron composite (PIC), sulfur modified iron (SMI), and iron oxide/hydroxide (IOH). Only filter material retained on a 60-mesh sieve (>0.25 mm) was used for evaluation. The laboratory investigation included saturated falling-head hydraulic conductivity tests, contaminant removal or desorption/dissolution batch tests, and low-to-high flow rate saturated solute transport column tests. Each of the four iron-based filter materials have sufficient water flow capacity as indicated by saturated hydraulic conductivity values that in most cases were greater than 1 x 10$^{-4}$ cm/s. For the 1, 10, and 100 ppm PO$_4^{3-}$-P contaminant removal batch tests, each of the four iron-based filter materials removed at least 95% of the PO$_4^{3-}$-P originally present. However, for the 1000 ppm PO$_4^{3-}$-P contaminant removal batch tests, IOH by far exhibited the greatest removal effectiveness (99% PO$_4^{3-}$-P removal), followed by SMI (72% PO$_4^{3-}$-P removal), then ZVI (62% PO$_4^{3-}$-P removal), and finally PIC (15% PO$_4^{3-}$-P removal). The desorption/dissolution batch test results, especially with respect to SMI and IOH, indicate that once PO$_4^{3-}$ is adsorbed/precipitated onto surfaces of iron-based filter material particles, this PO$_4^{3-}$ becomes fixed and is then not readily desorbed/dissolved back into solution. The results from the column tests showed that regardless of low or high flow rate (contact time ranged from a few hours to a few minutes) and PO$_4^{3-}$ concentration (1 ppm or 10 ppm PO$_4^{3-}$-P), PIC, SMI, and IOH reduced PO$_4^{3-}$-P concentrations to below detection limits, while ZVI removed at least 90% of the influent PO$_4^{3-}$-P. Consequently, these laboratory results indicate that the ZVI, PIC, SMI, and IOH filter materials all exhibit promise for phosphate drainage water treatment. Water Environ. Res., 86, 852 (2014).

KEYWORDS: phosphate, iron-based filter materials, drainage water, water treatment.

doi:10.2175/106143014X13975035525942

Introduction

Subsurface drainage, a common farm practice in cool, humid climates of Canada, parts of Europe, and the Midwest United States, is used to remove excess soil moisture by lowering shallow water table levels, thereby improving crop yields (Beauchamp, 1987; Pavelis, 1987; Smedema et al., 2004). A 1985 survey (Pavelis, 1987) showed that the states composing the Midwest United States (Illinois, Indiana, Iowa, Ohio, Minnesota, Michigan, Missouri, and Wisconsin) had approximately 12.5 million ha containing subsurface drainage systems, the large majority of which was cropland. Although subsurface drainage systems, composed of buried drainage pipe networks, certainly provide substantial economic benefit, they also have adverse environmental consequences. Manure and inorganic fertilizer nutrients, such as phosphate, are often intercepted by the buried drainage pipes and then discharged directly to local waterways (Zucker and Brown, 1998). Phosphate released with drainage water can in turn contribute to the eutrophication of freshwater lakes, such as in the case of Lake Erie in the Midwest United States—Canada (Ohio Environmental Protection Agency, 2010) and for Grand Lake St. Marys in western Ohio (Hoorman et al., 2008). To mitigate the adverse environmental effects of phosphate resulting from agricultural subsurface drainage practices, various onsite water treatment options need to be considered, evaluated, and implemented.

Phosphate (PO$_4^{3-}$, also referred to as orthophosphate, dissolved phosphorus, soluble reactive phosphorus, etc.), as previously indicated, is commonly found in subsurface drainage water released from farm fields. The amount of PO$_4^{3-}$ that is found in an agricultural drainage water depends on a number of factors, including type of fertilizer applied (manure or inorganic), amount of fertilizer applied, timing of fertilizer application relative to rainfall events, rainfall event intensity along with corresponding drainage water discharge rate, soil texture, type of crop, etc. (Algoazany et al., 2007; Beauchemin et al., 1998; Gentry et al., 2007; Lu, 2004). Kladivko et al. (1991) measured agricultural subsurface drainage phosphate-phosphorus (PO$_4^{3-}$-P) values in the range of 0.005 to 0.1 mg/L at an experimental field site in Indiana. At 27 farm sites in Quebec, Canada, Beauchemin et al. (1998) observed subsurface drainage water PO$_4^{3-}$-P values in the range of ~0 to 0.6 mg/L. Laubel et al. (1999) monitored storm event PO$_4^{3-}$-P in the range of 0.04 to 0.39 mg/L at the subsurface drainage pipe network outlet for a small agricultural watershed in Denmark. A review of previous investigations indicate that subsurface drainage PO$_4^{3-}$-P values in agricultural settings are most often well below 0.25 mg/L, but values up to and even exceeding 1.0 mg/L have been reported (Kinley et al., 2007; Lu, 2004; Sims et al., 1998).

Agricultural subsurface drainage systems are best described as buried drainage pipe networks and are typically composed of drainage pipe laterals that feed into a main collector pipe that outlets into a ditch or small stream. Consequently, an in-line
filter treatment system located on the main collector pipe near the subsurface drainage system outlet could be a viable means for removing PO_4^{3-} from drainage waters before these waters are discharged into the environment. The type of porous, chemically reactive material that is incorporated into a filter system to remove PO_4^{3-} will be critical for effective water treatment, and in this regard, iron-based materials could be very promising.

Iron-based materials, such as elemental iron (i.e., zero-valent iron) and iron oxides/hydroxides, have been evaluated for PO_4^{3-} water treatment (McCobb et al., 2009; Robertson and Lombardo, 2011). There are three possible mechanisms by which zero-valent iron (ZVI) can remove PO_4^{3-}. Iron oxidation processes can lead to the generation of dissolved ferrous/ferric iron ($\text{Fe}^{2+}/\text{Fe}^{3+}$) and the formation of iron oxide/hydroxide minerals or amorphous solids (Henderson and Demond, 2007; Huang and Zhang, 2005; Kamolpornwijit and Liang, 2006; Phillips et al., 2003; Stumm and Morgan, 1981; Takeno, 2005). Ferrous and ferric iron ($\text{Fe}^{2+}/\text{Fe}^{3+}$) can combine with PO_4^{3-} to form low solubility iron-phosphate precipitates (Bohn et al., 1985; Goldberg, 1985; McBride, 1994). Furthermore, these iron oxide/hydroxides (from ZVI oxidation), given low pH conditions, can exhibit a net positive surface charge (Sparks, 2003), which in turn promotes electrostatic adsorption of negatively charged PO_4^{3-} ions (Arai and Sparks, 2007).

Iron oxides/hydroxides (IOH) have been specifically developed and manufactured for water treatment (Dennis, 2007). Similar to ZVI, there are three possible mechanisms by which IOH can remove PO_4^{3-}. Dissolution of IOH can release ferrous/ferric iron ($\text{Fe}^{2+}/\text{Fe}^{3+}$) ions (Robertson and Lombardo, 2011), which can combine with PO_4^{3-} to form low solubility iron-phosphate precipitates (Bohn et al., 1985; Stumm and Morgan, 1981). Also, IOH particle surfaces have functional groups sites where PO_4^{3-} ions (Arai and Sparks, 2007) can become attached via ligand exchange (Bohn et al., 1985; Goldberg, 1985; McBride, 1994). Functional additives are mixed. The mixture was then processed through powder metallurgical technologies to achieve an iron composite, SMI, and IOH filter materials with respect to hydraulic flow efficiency and drainage water treatment of PO_4^{3-}.

Materials and Methods

Iron-Based Filter Materials. Four iron-based filter materials were evaluated in this investigation. The first material, ZVI, obtained from Connelly-GPM, Inc. (Chicago, Illinois; product name CC-1190), is best described as a ground iron aggregate composed of shavings from cast iron borings. The second material, PIC, obtained from North American Höganas, Inc. (Hollisopple, Pennsylvania; product name Cleanit LC), is manufactured with high-purity elemental iron powder to which functional additives are mixed. The mixture was then processed through powder metallurgical technologies to achieve an iron composite media with high internal porosity (specific surface area $\approx 10.0 \text{ m}^2/\text{g}$), where functional groups are evenly distributed in either free or partially alloyed forms. The third material, SMI, was obtained from SMI PS, Inc. (Lincoln, California), and can be described as a hydrogen-reduced, high-surface-area iron powder that has been additionally modified through chemical reaction with pure sulfur to produce sulfur/iron compound surface coatings on the iron particles. The fourth material, IOH, is manufactured by LANXESS AG (Leverkusen, Germany; product name Bayoxide E33), and can be described as a synthetic, high-surface-area ($\approx 150 \text{ m}^2/\text{g}$) goethite (chemical formula: α-FeOOH). To improve hydraulic flow efficiency (i.e., increase hydraulic conductivity), fine-grained particles passing through a 60-mesh sieve (particle size $<0.25 \text{ mm}$) were removed from the ZVI, PIC, SMI, and IOH filter materials that were tested in this investigation.

Properties of the ZVI, PIC, SMI, and IOH filter materials are provided in Table 1. The pH and oxidation/reduction potential...
carried out with a 0.01-mole/L calcium sulfate (CaSO₄) solution, the 60-mesh sieved PIC and SMI materials were predominantly composed of medium sand sized particles, while shows that the 60-mesh sieved ZVI and IOH materials were spiked with various concentrations of PO₄³⁻-P by dissolving specific amounts of monobasic potassium phosphate (KH₂PO₄). Unspiked Waterman ANRL drainage water had an average soluble phosphorus concentration of 0.095 ppm (standard deviation = 0.029 ppm). With respect to other dissolved anions and cations commonly found in agricultural waters, laboratory analysis done by the Ohio State University (OSU)—Service Testing and Research Laboratory (STAR) in Wooster, Ohio, determined that the unspiked Waterman ANRL drainage water contained ~56 ppm calcium (Ca²⁺), ~23 ppm chloride (Cl⁻), ~18 ppm magnesium (Mg²⁺), ~6 ppm nitrate (as NO₃⁻), 1 ppm potassium (K⁺), and 13 ppm sulfate (as SO₄²⁻). The OSU—STAR laboratory also confirmed that the soluble phosphorus originally present in the Waterman ANRL drainage water is predominantly in the form of PO₄³⁻-P. The contaminant removal batch tests were conducted using Waterman ANRL drainage water spiked with 1, 10, 100, and 1000 ppm PO₄³⁻-P. Waterman ANRL drainage water spiked with 100 ppm PO₄³⁻-P was used for the first stage of the desorption/dissolution batch tests. The saturated solute transport column tests were carried out with Waterman ANRL drainage water spiked with 1 or 10 ppm PO₄³⁻-P. The spiked PO₄³⁻-P concentrations (1, 10, 100, and 1000 ppm) in the drainage water used for the batch and column tests would be considered high to extraordinarily high compared to PO₄³⁻-P concentrations normally found in agricultural drainage waters (Kinley et al., 2007; Lu, 2004; Sims et al., 1998), and these high to extraordinarily high PO₄³⁻-P concentrations were chosen to more rigorously test ZVI, PIC, SMI, and IOH for drainage water PO₄³⁻-P removal. Ultrapure deionized water was used for the second stage of the desorption/dissolution batch tests, while the third stage of these batch tests used a 0.01-mole/L potassium sulfate (K₂SO₄) solution.

The 0.01-mole/L CaSO₄ solution, the DARA drainage water, the Waterman ANRL drainage water spiked with 1 ppm PO₄³⁻-P, the Waterman ANRL drainage water spiked with 10 ppm PO₄³⁻-P, and the Waterman ANRL drainage water spiked with 100 ppm PO₄³⁻-P all had near neutral pH values (6 to 8). The Waterman ANRL drainage water spiked with 1000 ppm PO₄³⁻-P, the ultrapure deionized water, and the 0.01-mole/L K₂SO₄ solution had respective pH values of 5.88, 5.83, and 5.72, which would be considered acidic (4 to 6). The unspiked Waterman ANRL drainage water had a pH of 8.25, which would be considered alkaline (8 to 10). All test solutions used in this study had ORP values that ranged between 100 and 200 mV.

Saturated Falling-Head Hydraulic Conductivity Tests. Saturated hydraulic conductivity governs the rate at which water flows through a filter material under saturated conditions. To be hydraulically practical, a filter material must have a sufficiently high saturated hydraulic conductivity, at least equal to and preferably much greater than 1.0 × 10⁻³ cm/s, which is a stormwater sand filter design criteria (Barr Engineering Company, 2001; Blick, et al., 2004; Claytor and Schueler, 1996). Standard falling-head hydraulic conductivity tests (Freeze and Cherry, 1979; Todd, 1980) were used for hydraulic conductivity measurement.

The saturated falling-head hydraulic conductivity tests were carried out on 60-mesh sieved ZVI, PIC, SMI, and IOH filter material columns packed within permeameters. Hydraulic conductivity measurements were obtained from two separately packed columns for each individual filter material. The ZVI, PIC, and SMI materials were soaked with distilled water and allowed to drain and equilibrate for 24 hours prior to being packed within the permeameters. This was done to release as much hydrogen gas as possible generated by the interaction of elemental iron with water (Kamolpornwijit and Liang, 2006).
By releasing this hydrogen gas from the ZVI, PIC, and SMI materials before they were packed into the permeameters, there was hopefully less chance of hydrogen gas bubbles forming, which would block pores and reduce hydraulic conductivity. Unsoaked, dry IOH material was packed into the permeameters because interaction between IOH and water was not expected to produce hydrogen gas.

The packed filter material columns within the permeameters were 152 mm in length, 41 mm in diameter, and were first saturated with the 0.01-mole/L CaSO₄ solution before the initial hydraulic conductivity measurement. Dry bulk density averaged 2.47 g/cm³ for the two ZVI columns, 1.27 g/cm³ for the two PIC columns, 2.26 g/cm³ for the two SMI columns, and 0.51 g/cm³ for the two IOH columns. Laboratory temperatures during testing ranged from 20 to 25 °C. Hydraulic conductivity measurements for each column (again, two packed columns for each filter material) were obtained over a period of 8 to 12 days, first using the CaSO₄ solution, then the unspiked Waterman ANRL drainage water, and finally, the DARA drainage water.

Phosphorus Analysis Methods for Batch and Column Tests. Concentrations of soluble phosphorus (soluble-P) within batch test supernatant and column test effluent were measured using inductively coupled plasma (ICP) methods. These ICP methods have commonly been used to measure metal concentrations in water samples (APHA et al., 1998); however, ICP methods have now also gained acceptance for phosphorous analysis of soils and agricultural waters (Matula, 2011; Self-Davis et al., 2000). In this study, soluble-P was measured using a Perkin-Elmer (Waltham, Massachusetts) Optima 3300 DV ICP-OES (inductively coupled plasma optical emission spectrometer) or a Thermo Finnigan Element 2 (San Jose, California) ICP-SFMS (inductively coupled plasma sector field mass spectrometer). The phosphorus detection limit for the ICP-OES ranged from 0.01 to 0.08 ppm. The phosphorus detection limit for the ICP-SFMS was 0.009 ppm. The ICP-SFMS was used in place of the ICP-OES to obtain more accurate results when low concentrations of soluble-P were expected. It is important to note that in this study the drainage water used in the batch and column tests was spiked with high levels of PO₄³⁻; therefore, the batch test supernatant or column test effluent soluble-P measurements essentially represent PO₄³⁻-P values.

Contaminant Removal Batch Tests. Contaminant removal batch tests were carried out with ZVI, PIC, SMI, and IOH at ambient laboratory temperatures ranging from 20 to 25 °C. Control batch tests with no filter material (NFM) were also carried out to quantify PO₄³⁻ amounts adsorbed by the experimental apparatus. These contaminant removal batch tests provided a preliminary assessment of the PO₄³⁻ removal capabilities and, in turn, decided that further testing of ZVI, PIC, SMI, or IOH was warranted. Each of the filter materials (and NFM) was tested against Waterman ANRL drainage water spiked with 1, 10, 100, and 1000 ppm PO₄³⁻-P. The repeatability of results for PO₄³⁻ removal was confirmed by conducting a set of three batch test replicates for each combination of filter material (or NFM) and Waterman ANRL drainage water spiked with 1, 10, 100, or 1000 ppm PO₄³⁻-P. One batch test within each three replicate set was chosen for pH and ORP measurement using methods previously described.

In each filter material contaminant removal batch test, 5 g of filter material (60-mesh sieved) and 40 g of spiked Waterman ANRL drainage water were combined in a 50-mL polypropylene centrifuge tube (BD Biosciences, Bedford, Massachusetts). The filter material and batch test solution were thoroughly mixed by placing the centrifuge tube on a laboratory rotator (Mini LabRoller Rotator, Labnet International, Inc., Woodbridge, New Jersey) operated at 20 rpm. Each contaminant removal batch test was then stopped after 24 hours of mixing. Procedures for the control batch tests were the same, with only spiked Waterman ANRL drainage water (40 g), but no added filter material. Once pH and ORP values were obtained for one batch test within each three replicate set, all batch test centrifuge tubes containing filter material (or NFM) and solution were then centrifuged (Beckman Model TJ-6 Centrifuge, Beckman Coulter, Inc., Fullerton, California) at 2500 rpm (800 g) for 15 minutes to separate the filter material from the solution. The supernatant solution was then decanted into a second 50-mL polypropylene centrifuge. Supernatant concentrations of soluble-P (essentially, PO₄³⁻-P) were measured using the ICP methods previously described.

Desorption/Dissolution Batch Tests. The desorption/dissolution batch tests were carried out for the purpose of determining if the PO₄³⁻ that adsorbed or precipitated onto ZVI, PIC, SMI, or IOH particle surfaces could be readily desorbed or dissolved back into solution via washing with water or an electrolyte solution. Each desorption/dissolution batch test was carried out in three stages at ambient laboratory temperatures ranging from 20 to 25 °C. The repeatability of results for the phosphate desorption/dissolution batch tests was confirmed by conducting two replicate batch tests for each filter material (or NFM).

For the first stage of each phosphate desorption/dissolution batch test, 5 g (dry weight) of filter material (60-mesh sieved) and 40 g of Waterman ANRL drainage water spiked with 100 ppm PO₄³⁻-P were combined in a 50-mL centrifuge tube. The filter material and the spiked drainage water were thoroughly mixed with a laboratory rotator operated at 20 rpm. The first stage of each dissolution/desorption batch test was then stopped after 24 hours. Procedures for the control batch tests were the same, but with NFM. All batch test centrifuge tubes containing filter material (or NFM) and solution were then centrifuged at 2500 rpm (800 g) for 15 minutes to separate any filter material from the solution. The Stage 1 supernatant solution was then decanted into a clean 50-mL polypropylene centrifuge tube.

For the second stage of each desorption/dissolution batch test, once the Stage 1 supernatant had been removed, 40 g of ultrapure deionized water only was added to the original centrifuge tubes, which had either 5 g of filter material or were empty (NFM—control tests). As with the first stage, the centrifuge tubes with filter material (or NFM) and the added ultrapure deionized water were placed on a laboratory rotator and mixed for 24 hours, then centrifuged for 15 minutes, followed by decanting of the Stage 2 supernatant into a clean 50-mL centrifuge tube.

For the third stage of each desorption/dissolution batch test, once the Stage 2 supernatant had been removed, 40 g of 0.01-mole/L K₂SO₄ solution were added to the original centrifuge tubes, which again had either 5 g of iron-based filter material or were empty (NFM—control tests). As with the first and second stages, the centrifuge tubes with filter material (or NFM) and K₂SO₄ solution were placed on a laboratory rotator and mixed for 24 hours, then centrifuged for 15 minutes, followed by
decanting of the Stage 3 supernatant into a clean 50-mL centrifuge tube. Soluble-P measurements were obtained for the supernatant solutions from the first, second, and third stages of these desorption/dissolution batch tests with ICP methods previously described.

Low-to-High Flow Rate Saturated Solute Transport Column Tests. By allowing control of solution flux, and in turn, the filter material to solution contact time, saturated solute transport column tests can help better evaluate the likely PO$_4^{3-}$ removal behavior of 60-mesh sieved ZVI, PIC, SMI, or IOH filter materials within an actual filter treatment system. For these column tests, continuously operated variable-flow-rate peristaltic pumps (Model 3384 and Model 3386, Control Company, Friendswood, Texas) delivered influent PO$_4^{3-}$-spiked Waterman ANRL drainage water to the bottom inlet of a vertically oriented Teflon permeameter containing a packed filter material (or empty—NFM) column. Ambient laboratory temperatures during testing ranged from 20 to 25 °C. As with the hydraulic conductivity tests, and based on the same reasoning, the ZVI, PIC, and SMI materials, but not IOH, were soaked with distilled water and allowed to drain and equilibrate for 24 hours prior to being packed within the permeameters. Filter material columns contained within the Teflon permeameters had a diameter of 51 mm and a length of 150 mm. Plastic laboratory tubing was used to deliver solution between the influent supply container, peristaltic pump, permeameter, and effluent sample container.

Effluent exiting the permeameter was collected over time in glass containers or polypropylene centrifuge tubes. During a column test, one out of two effluent samples (every other sample) was collected in a 1.9-L glass jar. The time period it took to collect the effluent sample in the glass jar and the total amount of effluent in the glass jar were then used to calculate column flow rates. Every other effluent sample (one out of two) not collected in a glass jar was instead collected in a 50-mL polypropylene centrifuge tube. The effluent in the centrifuge tube was measured for pH, and then the centrifuge tube containing the sample was centrifuged at 2500 rpm (800 g) for 15 minutes to separate out any filter material that might be present in the effluent sample. The supernatant effluent sample was next decanted into a second 50-mL polypropylene centrifuge tube for later analysis of soluble phosphorous (essentially, PO$_4^{3-}$-P) using the ICP methods previously described. In addition, column flow rates were also calculated for effluent samples collected with centrifuge tubes.

Information in Table 2 on the five saturated solute transport column tests includes type of filter material (or NFM), filter material dry bulk density, column pore volume, total effluent amount (in liters and pore volumes), average solution to filter material contact time, and flux. A control column test with no filter material present was carried out to quantify PO$_4^{3-}$ removal resulting from experimental apparatus and procedures. Column test operation and effluent sample handling techniques for the control column test were the same as those for the filter material column tests. The influent Waterman ANRL drainage water used in each column test was spiked first with 1 ppm PO$_4^{3-}$-P and then 10 ppm PO$_4^{3-}$-P. All column tests were carried out with high-flow rate steps interspersed with low-flow steps. By conducting the filter material column tests with both low and high flow rates, insight was gained on the water filter treatment contact time needed for effective removal of PO$_4^{3-}$. Column test duration was approximately 2 weeks, and for the ZVI, PIC, SMI, and IOH tests, the total amount of PO$_4^{3-}$-spiked Waterman ANRL drainage water flushed through the columns ranged from around 80 to 105 pore volumes.

Results and Discussion

Saturated Falling-Head Hydraulic Conductivity Test Results. The 60-mesh sieved ZVI, PIC, SMI, and IOH hydraulic conductivity measurements are presented in Figure 1. The hydraulic conductivity values obtained first with the 0.01-mole/L CaSO$_4$ solution averaged 0.129 cm/s for the two ZVI columns, 0.078 cm/s for the two PIC columns, 0.021 cm/s for the two SMI columns, and 0.143 cm/s for the two IOH columns. The hydraulic conductivity values obtained next with the unspiked Waterman ANRL drainage water averaged 0.110 cm/s for ZVI, 0.078 cm/s for PIC, 0.021 cm/s for SMI, and 0.131 cm/s for IOH. The final hydraulic conductivity values obtained with the DARA drainage water averaged 0.077 cm/s for ZVI, 0.049 cm/s for PIC, 0.009 cm/s for SMI, and 0.114 cm/s for IOH. All saturated hydraulic conductivity measurements for the four iron-based filter materials were far greater than the 1.0 × 10$^{-3}$ cm/s hydraulic conductivity criterion used for stormwater sand filters (Barr Engineering Company, 2001; Blick, et al., 2004; Claytor and Schueler, 1996). Based strictly on hydraulic conductivity considerations, IOH was best, followed by ZVI, then PIC, and finally, SMI.

Hydraulic conductivity tends to have a strong, positive correlation with average particle size (Freeze and Cherry,
Of the four iron-based filter materials tested, the lowest hydraulic conductivity values were exhibited by PIC and SMI, and these results are probably due in large part to PIC and SMI having a much greater amount of fine sand sized particles (>60%, Table 1) compared to ZVI or IOH, which were composed mostly of medium sand sized particles. The highest average hydraulic conductivity was obtained with IOH, which had by far the greatest amount of medium sand sized particles (>95%, Table 1).

The DARA drainage water contained significant amounts of suspended solids that were not present in the 0.01-mole/L CaSO₄ solution or the Waterman ANRL drainage water (see “Materials and Methods—Test Solutions” earlier in this document). Suspended solids can clog pore constrictions as a result, accounting for the lower hydraulic conductivity values found for each particular filter material with the DARA drainage water as compared to the CaSO₄ solution or the Waterman ANRL drainage water (see Figure 1). In a relative sense, the DARA drainage water hydraulic conductivity reduction was fairly small with IOH, as opposed to ZVI, PIC, and SMI, where the relative DARA drainage water hydraulic conductivity reductions were much greater. Consequently, with atypical drainage waters containing significant amounts of suspended solids, hydraulic conductivity reduction may be a concern with ZVI, PIC, and SMI.

Contaminant Removal Batch Test Results. Results for the contaminant removal batch tests are provided in Table 3. For the 1, 10, and 100 ppm PO₄³⁻-P spiked drainage water contaminant removal batch tests, the pH for the ZVI and PIC tests were alkaline to strongly alkaline (measurements were greater than 9), while much lower, near neutral to alkaline pH (measurements between 7 and 9) were obtained for the control, SMI, and IOH.
tests. For the 1000 ppm PO₄³⁻-P spiked drainage water batch tests, control test pH was acidic (pH ≤ 6), the pH for the ZVI, PIC, and IOH tests were near neutral (pH 6 to 8), and the SMI batch test pH was alkaline (measured value equaled 9). Batch test ORP values were between 77 and 144 mV for the control tests and ranged from –16 to 78 mV for IOH tests. All ORP values for the ZVI, PIC, and SMI contaminant removal batch tests were less than –300 mV, indicating the presence of very low redox conditions.

The coefficient of variation values listed in Table 3 are generally small, which indicates that the soluble phosphorus (essentially, PO₄³⁻-P) concentrations were quite consistent (similar) within any three replicate batch test set representing a particular combination of an iron-based filter material (or NFM) and one of the spiked drainage waters. Average soluble-P concentrations for the control tests indicate that contaminant removal batch test experimental procedures and equipment alone do not account for substantial PO₄³⁻-P loss. The 10 ppm PO₄³⁻-P spiked drainage water control batch tests exhibited the greatest average percent soluble-P reduction, which was a relatively modest loss of just 8%. For the 1, 10, and 100 ppm PO₄³⁻-P spiked drainage water contaminant removal batch tests, each of the four iron-based filter materials removed at least 95% of the soluble-P that was originally present. However, for the 1000 ppm PO₄³⁻-P contaminant removal batch tests, IOH by far exhibited the greatest removal effectiveness (99% soluble-P removal), followed by SMI (72% soluble-P removal), then ZVI (62% soluble-P removal), and finally PIC (17% soluble-P removal). Based on 1000 ppm PO₄³⁻-P contaminant removal batch test results, 7.92 mg of soluble-P was removed per gram of IOH, 5.76 mg of soluble-P was removed per gram of SMI, 4.96 mg of soluble-P was removed per gram of ZVI, and 1.36 mg of soluble-P was removed per gram of PIC.

Table 3, as a whole, shows that ZVI, PIC, SMI, and IOH all have, to a greater or lesser extent, promise for treatment of drainage water PO₄³⁻. Consequently, these contaminant removal batch test results indicate that further laboratory investigation of ZVI, PIC, SMI, and IOH filter materials for PO₄³⁻ treatment is certainly warranted. Furthermore, these contaminant removal batch tests also imply that ZVI, PIC, SMI, and IOH could possibly be used in large mixing reactors to treat PO₄³⁻ present in industrial and municipal wastewaters before these waters are released into the environment.

Desorption/Dissolution Batch Tests

Results of the desorption/dissolution batch tests are shown in Table 4. The Stage 2 and Stage 3 percent desorbed/dissolved values represent the percent of soluble-P desorbed/dissolved during Stage 2 or Stage 3 relative to the total amount of the soluble-P that was originally removed during Stage 1. With one exception, the control (NFM) desorption/dissolution batch tests results indicate that experimental equipment and procedures do not account for substantial soluble-P removal during Stage 1 or substantial soluble-P desorption/dissolution during either Stage 2 or Stage 3. The exception was with Stage 3 for one of the two control tests in which the desorbed/dissolved soluble-P concentration of 1.55 ppm is unexpectedly high, and is probably just an outlier that is best explained by some form of cross-contamination.

Table 3—Results for contaminant removal batch tests.

<table>
<thead>
<tr>
<th>Initial solution</th>
<th>Filter material</th>
<th>pH</th>
<th>ORPa</th>
<th>mV</th>
<th>Average soluble phosphorous concentration at test completionb</th>
<th>Coefficient of variation for soluble-P concentration at test completionb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage water spiked with 1 ppm PO₄³⁻-P</td>
<td>Control⁹</td>
<td>7.87</td>
<td>77</td>
<td>1.06</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZVI</td>
<td>9.16</td>
<td>–308</td>
<td>ND⁷</td>
<td>NA⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIC</td>
<td>10.07</td>
<td>–802</td>
<td>ND⁷</td>
<td>NA⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI</td>
<td>8.47</td>
<td>–532</td>
<td>ND⁷</td>
<td>NA⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOH</td>
<td>8.22</td>
<td>–13</td>
<td>ND⁷</td>
<td>NA⁷</td>
<td></td>
</tr>
<tr>
<td>Drainage water spiked with 10 ppm PO₄³⁻-P</td>
<td>Control⁹</td>
<td>7.87</td>
<td>118</td>
<td>9.20</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZVI</td>
<td>9.17</td>
<td>–658</td>
<td>ND⁷</td>
<td>NA⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIC</td>
<td>10.01</td>
<td>–650</td>
<td>ND⁷</td>
<td>NA⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI</td>
<td>8.55</td>
<td>–536</td>
<td>ND⁷</td>
<td>NA⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOH</td>
<td>7.71</td>
<td>55</td>
<td>ND⁷</td>
<td>NA⁷</td>
<td></td>
</tr>
<tr>
<td>Drainage water spiked with 100 ppm PO₄³⁻-P</td>
<td>Control⁹</td>
<td>7.16</td>
<td>144</td>
<td>93.91</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZVI</td>
<td>9.38</td>
<td>–598</td>
<td>3.00</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIC</td>
<td>9.88</td>
<td>–622</td>
<td>2.45</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI</td>
<td>8.66</td>
<td>–713</td>
<td>4.62</td>
<td>0.199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOH</td>
<td>7.68</td>
<td>78</td>
<td>0.42</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Drainage water spiked with 1000 ppm PO₄³⁻-P</td>
<td>Control⁹</td>
<td>5.96</td>
<td>140</td>
<td>1000.48</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZVI</td>
<td>7.74</td>
<td>–342</td>
<td>375.72</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIC</td>
<td>6.37</td>
<td>–656</td>
<td>825.04</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI</td>
<td>9.00</td>
<td>–732</td>
<td>278.68</td>
<td>0.120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOH</td>
<td>7.86</td>
<td>–16</td>
<td>8.59</td>
<td>0.044</td>
<td></td>
</tr>
</tbody>
</table>

a ORP = oxidation/reduction potential.

b Based on three replicate batch tests.

c Drainage water obtained from the Ohio State University–Waterman Agricultural and Natural Resources Laboratory in Columbus, Ohio.

d Control batch tests were conducted with no filter material (NFM) present.

ND = not detected.

NA = not applicable.
Stage 1 of the desorption/dissolution batch tests were carried out in the same manner as the 100 ppm PO\text{4}^{–3}–P contaminant removal batch tests. The results from Stage 1 of the desorption/dissolution batch tests are fairly comparable to the results obtained by the 100 ppm PO\text{4}^{–3}–P contaminant removal batch tests, with both showing that ZVI, PIC, SMI, and IOH removed almost all soluble-P originally present. Although the differences are typically small, marginally greater amounts of soluble-P were removed by ZVI, PIC, SMI, and IOH during Stage 1 of the desorption/dissolution batch tests as compared to the amounts of soluble-P removed during the 100 ppm PO\text{4}^{–3}–P contaminant removal batch tests (see Tables 3 and 4).

Table 4 indicates that very little of the soluble-P (essentially, PO\text{4}^{–3}–P) originally adsorbed or precipitated onto ZVI, PIC, SMI, or IOH particle surfaces during Stage 1 were then desorbed/dissolved back into solution during the Stage 2 wash with ultrapure deionized water. This is especially true for SMI and IOH, where far less than 1% of the soluble-P originally adsorbed or precipitated onto SMI or IOH particle surfaces during Stage 1 was then desorbed or dissolved back into solution by the ultrapure deionized water wash. Furthermore, only 2 to 3% of the soluble-P originally adsorbed or precipitated onto ZVI or PIC particle surfaces during Stage 1 was then desorbed or dissolved back into solution by the ultrapure deionized water wash.

During Stage 3, a solution with a fairly high concentration of K\text{2}SO\text{4} electrolyte was used to potentially displace any PO\text{4}^{–3}– that might have been electrostatically attached to ZVI, PIC, SMI, and IOH particle surfaces. Iron oxides/hydroxides, like IOH, or those formed by oxidation of ZVI, PIC, or SMI, given low enough pH conditions, can exhibit a net positive surface charge that causes electrostatic adsorption of negatively charged PO\text{4}^{–3}– ions (Arai and Sparks, 2007; Sparks, 2003). The molar amount of sulfate (SO\text{4}^{–2}) added during Stage 3 was 3 times greater that molar amounts of PO\text{4}^{–3}– introduced during Stage 1, and as a result of chemical mass action considerations, it was expected that SO\text{4}^{–2}– could in turn displace significant amounts of any PO\text{4}^{–3}– that had been electrostatically adsorbed by the iron-based filter materials. Stage 3 results in Table 4 show almost no desorption/dissolution of soluble-P by either SMI or IOH. Approximately 6 to 7% of the soluble-P originally adsorbed or precipitated onto ZVI or PIC particle surfaces during Stage 1 was found to desorb or dissolve back into solution during the Stage 3 K\text{2}SO\text{4} extraction wash. The Stage 3 ZVI and PIC results indicate that a proportionally small amount of PO\text{4}^{–3}– is adsorbed onto ZVI and PIC particle surfaces via relatively weak electrostatic interactions, and this PO\text{4}^{–3}– can be displaced, to some extent, using an electrolyte solution. On the whole, the desorption/dissolution batch test results (Table 4) show that once PO\text{4}^{–3}– is adsorbed or precipitated onto ZVI, PIC, SMI, or IOH particle surfaces, this PO\text{4}^{–3}– becomes strongly fixed and is not readily desorbed or dissolved back into solution.

Low-to-High Flow Rate Saturated Solute Transport Column Test Results. As previously mentioned, these column tests allow control of solution flux, and in turn, the filter material to solution contact time; therefore facilitating better assessment of the likely drainage water PO\text{4}^{–3}– treatment capabilities for ZVI, PIC, SMI, or IOH within an actual filter treatment system. Results for the five column tests are displayed in Figure 2. Effluent soluble-P and flow rate for each of the five column tests are shown in Figures 2a, 2b, 2c, 2d, and 2e. The effluent pH for all five column tests is displayed in Figure 2f.

At the beginning and throughout most of each column test, the influent Waterman ANRL drainage water was spiked with 1 ppm PO\text{4}^{–3}–P. Toward the end of each saturated solute transport column test, the influent Waterman ANRL drainage water was spiked with 10 ppm PO\text{4}^{–3}–P. Vertical solid black dividing lines in Figures 2a, 2b, 2c, 2d, and 2e depict the column test transition from 1 ppm PO\text{4}^{–3}–P spiked drainage water to 10 ppm PO\text{4}^{–3}–P spiked drainage water. Each column test began with an extended low flow rate step followed by the first high flow rate step, after which there was a shorter low flow rate step, and then a second high flow rate steps (see Figures 2a, 2b, 2c, 2d, and 2e). The completion of the second high flow rate step coincided with the column test transition from 1 ppm PO\text{4}^{–3}–P spiked drainage water to 10 ppm PO\text{4}^{–3}–P spiked drainage water. This transition was followed by a short low flow rate step and then the third and final high flow rate step, which completed the column test (see Figures 2a, 2b, 2c, 2d, and 2e). In all five column tests, the low flow rate steps were fairly consistent with average values between 40 to 60 mL/h. The first high flow rate step in the five column tests averaged between 1000 to 2800 mL/h, the second high flow rate step averaged between 3400 to 5000 mL/h, and the third high flow rate step averaged between 3700 to 5600 mL/h.

The column influent 1 ppm PO\text{4}^{–3}–P spiked drainage water had a pH of 7.76, and the column influent 10 ppm PO\text{4}–P spiked
drainage water had a pH of 7.43. Effluent pH in each of the five column tests did not seem to be influenced by the transition from 1 ppm PO$_4^{3-}$-P spiked drainage water to 10 ppm PO$_4^{3-}$-P spiked drainage water or from changes between low and high flow rates (compare effluent pH in Figure 2f with 1 ppm PO$_4^{3-}$-P to 10 ppm PO$_4^{3-}$-P transition points and flow rates in Figures 2a, 2b, 2c, 2d, and 2e). The control column test effluent had an average pH value of 7.98, which, when compared to influent pH.
values of 7.76 and 7.43, indicates that column test equipment and procedures did not greatly affect pH. Average effluent pH values for the ZVI and PIC column tests were 8.84 and 9.12, respectively. Effluent pH was acidic (<6) near the beginning of the SMI column test, but by the end of the SMI test, effluent pH had risen and leveled off to a value of close to 9. The average effluent pH for the IOH column test was 7.81, which was similar to influent spiked drainage water pH values and the effluent pH for the control column test. Consequently, IOH does not seem to greatly affect column test effluent pH; however, ZVI, PIC, and SMI cause a substantial increase in column test effluent pH to alkaline levels (>8). The high column test effluent pH values for ZVI, PIC, and SMI may reflect a chemical reaction between iron and water, such as FeO\(^2\) + 2H\(_2\)O → Fe\(^{2+}\) + H\(_2\) + 2OH\(^-\) which produces ferrous iron, hydrogen gas, and hydroxyl anions (Kamolpornwijit and Liang, 2006). The production of hydroxyl anions would cause significant pH increase, as was found with the ZVI, PIC, and SMI column test effluents. These column test effluent pH results imply that additional drainage water treatment may be required with filter systems containing ZVI, PIC, and SMI, if the release of alkaline waters into the environment is a potential problem.

Effluent soluble-P concentrations for the control column test (Figure 2a) clearly shows that there was almost no PO\(_4^{3-}\)-P loss resulting from equipment and procedures. The effluent soluble-P concentrations for the ZVI column test were all below 0.1 ppm (Figure 2b). The effluent soluble-P concentrations for the PIC, SMI, and IOH, as depicted in Figures 2c, 2d, and 2e, were in all cases below detection limits (<0.009 ppm). Consequently, regardless of influent PO\(_4^{3-}\)-P concentrations and flow rate, ZVI, PIC, SMI, and IOH were found to remove almost all PO\(_4^{3-}\). The column test results, therefore, provide additional support for the potential use of ZVI, PIC, SMI, or IOH within filter treatment systems used to remove drainage water PO\(_4^{3-}\).

Perhaps most remarkable, with regard to the saturated solute transport column test results, is that even with a very high influent PO\(_4^{3-}\)-P concentration of 10 ppm and high flow rates in which the filter material to solution contact time was only 2.5 to 4.0 minutes, ZVI, PIC, SMI, and IOH were still able to remove almost all PO\(_4^{3-}\). This particular column test result is an indication of not just extremely effective PO\(_4^{3-}\) removal, but also a relatively fast chemical reaction rate where less than 4 minutes of contact time is needed for ZVI, PIC, SMI, and IOH to remove PO\(_4^{3-}\) from agricultural subsurface drainage waters. Furthermore, the desorption/dissolution batch test and saturated solute transport column test results, when taken together, signify that chemical reactions between the iron-based filter materials and PO\(_4^{3-}\) are rapid and not generally reversible, thereby implying that the dominant PO\(_4^{3-}\) removal mechanism is likely some form of ligand exchange, or maybe, precipitation of low solubility iron-phosphate compounds, but not electrostatic adsorption (McBride, 1994; Stumm and Morgan, 1981).

The cost-effectiveness of using iron-based filter materials to treat phosphate in agricultural drainage water will depend on a number of factors. The price per unit weight or per unit volume for the iron-based material used in the filter treatment system will certainly be one important factor. (These materials presently range in price from $1/kg to $20/kg.) With widespread water treatment use, the price of these iron-based materials could decrease substantially in the future. Iron-based filter material factors just as important as price are the phosphate treatment capacity and the contact time needed for drainage water phosphate removal. Treatment capacity and contact time will determine the amount of iron-based material needed for the phosphate filter treatment system. The less iron-based material needed, the more cost-effective the phosphate filter treatment system. Additional contaminant removal batch tests and long duration, variable flow rate saturated solute transport column tests will have to be carried out to determine the phosphate treatment capacity and treatment contact time of each iron-based filter material evaluated in this study. Final factors to take into account regarding cost-effectiveness of the iron-based filter materials is whether these materials can be regenerated or recycled. By flushing with caustic soda, spent IOH filter material can be regenerated and then reused several times for phosphate drainage water treatment (based on prior manufacturer experience using IOH for arsenic removal). Spent ZVI, PIC, and SMI will have monetary value as scrap iron that can be recycled for manufacturing purposes.

Summary, Conclusions, and Future Research

A preliminary laboratory evaluation regarding the use of iron-based filter materials for removing PO\(_4^{3-}\) in agricultural drainage waters was carried out with saturated falling-head hydraulic conductivity tests, contaminant removal batch tests, desorption/dissolution batch tests, and low-to-high flow rate saturated solute transport column tests. Four iron-based filter materials were tested: zero valent iron (ZVI), porous iron composite (PIC), sulfur modified iron (SMI), and a synthetic goethite iron oxide/hydroxide (IOH). The greatest saturated hydraulic conductivity values were obtained with IOH, but ZVI, PIC, and SMI all had high enough hydraulic conductivities to allow water flow rates probably sufficient for filter treatment. Results from the 1000 ppm PO\(_4^{3-}\)-P contaminant removal batch tests indicate that IOH had the largest PO\(_4^{3-}\) removal capacity, followed by SMI, with ZVI next, and then PIC. The desorption/dissolution batch tests showed that in general, especially for IOH and SMI, once PO\(_4^{3-}\) is adsorbed or precipitated onto particle surfaces of the iron-based filter materials, this PO\(_4^{3-}\) becomes strongly fixed and is not readily desorbed or dissolved back into solution. Effluent soluble-P measurements for the saturated solute transport column tests indicate that the ZVI, PIC, SMI, and IOH filter materials are all capable of rapid and effective removal of drainage water PO\(_4^{3-}\). Although all four iron-based filter materials showed promise, the overall laboratory findings imply that IOH may have a slight edge with respect to agricultural drainage water PO\(_4^{3-}\) treatment. More laboratory testing of ZVI, PIC, SMI, and IOH is needed to determine the minimum contact time for PO\(_4^{3-}\) removal (via higher flow rate column tests) and mechanisms for PO\(_4^{3-}\) removal (via rigorous adsorption isotherm tests). These laboratory studies should then be followed by field scale filter treatment studies.

Acknowledgments

The use of manufacturer/developer/marketer names are for informational purposes only and does not imply endorsement by the authors or their organizations. The authors express their appreciation to Debra Gamble and Elinor Murphy for their help with laboratory testing.

Submitted for publication September 16, 2013; accepted for publication June 6, 2014.
References
Ohio Environmental Protection Agency (2010) Ohio Lake Erie Phosphorus Task Force Final Report; Ohio Environmental Protection Agency: Columbus, Ohio.